home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Software of the Month Club 2000 October
/
Software of the Month - Ultimate Collection Shareware 277.iso
/
pc
/
PROGRAMS
/
UTILITY
/
WINLINUX
/
DATA1.CAB
/
programs_-_include
/
ASM-M68K
/
PGTABLE.H
< prev
next >
Wrap
C/C++ Source or Header
|
1999-09-17
|
23KB
|
819 lines
#ifndef _M68K_PGTABLE_H
#define _M68K_PGTABLE_H
#include <linux/config.h>
#include <asm/setup.h>
#ifndef __ASSEMBLY__
#include <asm/processor.h>
#include <linux/tasks.h>
/*
* This file contains the functions and defines necessary to modify and use
* the m68k page table tree.
*/
#include <asm/virtconvert.h>
/*
* Cache handling functions
*/
#define flush_icache() \
do { \
if (CPU_IS_040_OR_060) \
asm __volatile__ ("nop\n\t" \
".chip 68040\n\t" \
"cinva %%ic\n\t" \
".chip 68k" : ); \
else { \
unsigned long _tmp; \
asm __volatile__ ("movec %%cacr,%0\n\t" \
"orw %1,%0\n\t" \
"movec %0,%%cacr" \
: "=&d" (_tmp) \
: "id" (FLUSH_I)); \
} \
} while (0)
/*
* invalidate the cache for the specified memory range.
* It starts at the physical address specified for
* the given number of bytes.
*/
extern void cache_clear (unsigned long paddr, int len);
/*
* push any dirty cache in the specified memory range.
* It starts at the physical address specified for
* the given number of bytes.
*/
extern void cache_push (unsigned long paddr, int len);
/*
* push and invalidate pages in the specified user virtual
* memory range.
*/
extern void cache_push_v (unsigned long vaddr, int len);
/* cache code */
#define FLUSH_I_AND_D (0x00000808)
#define FLUSH_I (0x00000008)
/* This is needed whenever the virtual mapping of the current
process changes. */
#define __flush_cache_all() \
do { \
if (CPU_IS_040_OR_060) \
__asm__ __volatile__ ("nop\n\t" \
".chip 68040\n\t" \
"cpusha %dc\n\t" \
".chip 68k"); \
else { \
unsigned long _tmp; \
__asm__ __volatile__ ("movec %%cacr,%0\n\t" \
"orw %1,%0\n\t" \
"movec %0,%%cacr" \
: "=&d" (_tmp) \
: "di" (FLUSH_I_AND_D)); \
} \
} while (0)
#define __flush_cache_030() \
do { \
if (CPU_IS_020_OR_030) { \
unsigned long _tmp; \
__asm__ __volatile__ ("movec %%cacr,%0\n\t" \
"orw %1,%0\n\t" \
"movec %0,%%cacr" \
: "=&d" (_tmp) \
: "di" (FLUSH_I_AND_D)); \
} \
} while (0)
#define flush_cache_all() __flush_cache_all()
extern inline void flush_cache_mm(struct mm_struct *mm)
{
if (mm == current->mm)
__flush_cache_030();
}
extern inline void flush_cache_range(struct mm_struct *mm,
unsigned long start,
unsigned long end)
{
if (mm == current->mm)
__flush_cache_030();
}
extern inline void flush_cache_page(struct vm_area_struct *vma,
unsigned long vmaddr)
{
if (vma->vm_mm == current->mm)
__flush_cache_030();
}
/* Push the page at kernel virtual address and clear the icache */
extern inline void flush_page_to_ram (unsigned long address)
{
if (CPU_IS_040_OR_060) {
__asm__ __volatile__ ("nop\n\t"
".chip 68040\n\t"
"cpushp %%dc,(%0)\n\t"
"cinvp %%ic,(%0)\n\t"
".chip 68k"
: : "a" (virt_to_phys((void *)address)));
}
else {
unsigned long _tmp;
__asm volatile ("movec %%cacr,%0\n\t"
"orw %1,%0\n\t"
"movec %0,%%cacr"
: "=&d" (_tmp)
: "di" (FLUSH_I));
}
}
/* Push n pages at kernel virtual address and clear the icache */
extern inline void flush_icache_range (unsigned long address,
unsigned long endaddr)
{
if (CPU_IS_040_OR_060) {
short n = (endaddr - address + PAGE_SIZE - 1) / PAGE_SIZE;
while (n--) {
__asm__ __volatile__ ("nop\n\t"
".chip 68040\n\t"
"cpushp %%dc,(%0)\n\t"
"cinvp %%ic,(%0)\n\t"
".chip 68k"
: : "a" (virt_to_phys((void *)address)));
address += PAGE_SIZE;
}
}
else {
unsigned long _tmp;
__asm volatile ("movec %%cacr,%0\n\t"
"orw %1,%0\n\t"
"movec %0,%%cacr"
: "=&d" (_tmp)
: "di" (FLUSH_I));
}
}
/*
* flush all user-space atc entries.
*/
static inline void __flush_tlb(void)
{
if (CPU_IS_040_OR_060)
__asm__ __volatile__(".chip 68040\n\t"
"pflushan\n\t"
".chip 68k");
else
__asm__ __volatile__("pflush #0,#4");
}
static inline void __flush_tlb_one(unsigned long addr)
{
if (CPU_IS_040_OR_060) {
__asm__ __volatile__(".chip 68040\n\t"
"pflush (%0)\n\t"
".chip 68k"
: : "a" (addr));
} else
__asm__ __volatile__("pflush #0,#4,(%0)" : : "a" (addr));
}
#define flush_tlb() __flush_tlb()
/*
* flush all atc entries (both kernel and user-space entries).
*/
static inline void flush_tlb_all(void)
{
if (CPU_IS_040_OR_060)
__asm__ __volatile__(".chip 68040\n\t"
"pflusha\n\t"
".chip 68k");
else
__asm__ __volatile__("pflusha");
}
static inline void flush_tlb_mm(struct mm_struct *mm)
{
if (mm == current->mm)
__flush_tlb();
}
static inline void flush_tlb_page(struct vm_area_struct *vma,
unsigned long addr)
{
if (vma->vm_mm == current->mm)
__flush_tlb_one(addr);
}
static inline void flush_tlb_range(struct mm_struct *mm,
unsigned long start, unsigned long end)
{
if (mm == current->mm)
__flush_tlb();
}
extern inline void flush_tlb_kernel_page(unsigned long addr)
{
if (CPU_IS_040_OR_060) {
mm_segment_t old_fs = get_fs();
set_fs(KERNEL_DS);
__asm__ __volatile__(".chip 68040\n\t"
"pflush (%0)\n\t"
".chip 68k"
: : "a" (addr));
set_fs(old_fs);
} else
__asm__ __volatile__("pflush #4,#4,(%0)" : : "a" (addr));
}
/* Certain architectures need to do special things when pte's
* within a page table are directly modified. Thus, the following
* hook is made available.
*/
#define set_pte(pteptr, pteval) \
do{ \
*(pteptr) = (pteval); \
} while(0)
/* PMD_SHIFT determines the size of the area a second-level page table can map */
#define PMD_SHIFT 22
#define PMD_SIZE (1UL << PMD_SHIFT)
#define PMD_MASK (~(PMD_SIZE-1))
/* PGDIR_SHIFT determines what a third-level page table entry can map */
#define PGDIR_SHIFT 25
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
/*
* entries per page directory level: the m68k is configured as three-level,
* so we do have PMD level physically.
*/
#define PTRS_PER_PTE 1024
#define PTRS_PER_PMD 8
#define PTRS_PER_PGD 128
#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
/* the no. of pointers that fit on a page: this will go away */
#define PTRS_PER_PAGE (PAGE_SIZE/sizeof(void*))
typedef pgd_t pgd_table[PTRS_PER_PGD];
typedef pmd_t pmd_table[PTRS_PER_PMD];
typedef pte_t pte_table[PTRS_PER_PTE];
#define PGD_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pgd_table))
#define PMD_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pmd_table))
#define PTE_TABLES_PER_PAGE (PAGE_SIZE/sizeof(pte_table))
typedef pgd_table pgd_tablepage[PGD_TABLES_PER_PAGE];
typedef pmd_table pmd_tablepage[PMD_TABLES_PER_PAGE];
typedef pte_table pte_tablepage[PTE_TABLES_PER_PAGE];
/* Virtual address region for use by kernel_map() */
#define KMAP_START 0xd0000000
#define KMAP_END 0xf0000000
/* Just any arbitrary offset to the start of the vmalloc VM area: the
* current 8MB value just means that there will be a 8MB "hole" after the
* physical memory until the kernel virtual memory starts. That means that
* any out-of-bounds memory accesses will hopefully be caught.
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
* area for the same reason. ;)
*/
#define VMALLOC_OFFSET (8*1024*1024)
#define VMALLOC_START (((unsigned long) high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
#define VMALLOC_VMADDR(x) ((unsigned long)(x))
#define VMALLOC_END KMAP_START
#endif /* __ASSEMBLY__ */
/*
* Definitions for MMU descriptors
*/
#define _PAGE_PRESENT 0x001
#define _PAGE_SHORT 0x002
#define _PAGE_RONLY 0x004
#define _PAGE_ACCESSED 0x008
#define _PAGE_DIRTY 0x010
#define _PAGE_SUPER 0x080 /* 68040 supervisor only */
#define _PAGE_FAKE_SUPER 0x200 /* fake supervisor only on 680[23]0 */
#define _PAGE_GLOBAL040 0x400 /* 68040 global bit, used for kva descs */
#define _PAGE_COW 0x800 /* implemented in software */
#define _PAGE_NOCACHE030 0x040 /* 68030 no-cache mode */
#define _PAGE_NOCACHE 0x060 /* 68040 cache mode, non-serialized */
#define _PAGE_NOCACHE_S 0x040 /* 68040 no-cache mode, serialized */
#define _PAGE_CACHE040 0x020 /* 68040 cache mode, cachable, copyback */
#define _PAGE_CACHE040W 0x000 /* 68040 cache mode, cachable, write-through */
#define _DESCTYPE_MASK 0x003
#define _CACHEMASK040 (~0x060)
#define _TABLE_MASK (0xfffffe00)
#define _PAGE_TABLE (_PAGE_SHORT)
#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_NOCACHE)
#ifndef __ASSEMBLY__
/* This is the cache mode to be used for pages containing page descriptors for
* processors >= '040. It is in pte_mknocache(), and the variable is defined
* and initialized in head.S */
extern int m68k_pgtable_cachemode;
/* This is the cache mode for normal pages, for supervisor access on
* processors >= '040. It is used in pte_mkcache(), and the variable is
* defined and initialized in head.S */
#if defined(CONFIG_060_WRITETHROUGH)
extern int m68k_supervisor_cachemode;
#else
#define m68k_supervisor_cachemode _PAGE_CACHE040
#endif
#if defined(CPU_M68040_OR_M68060_ONLY)
#define mm_cachebits _PAGE_CACHE040
#elif defined(CPU_M68020_OR_M68030_ONLY)
#define mm_cachebits 0
#else
extern unsigned long mm_cachebits;
#endif
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits)
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED | mm_cachebits)
#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED | mm_cachebits)
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED | mm_cachebits)
/* Alternate definitions that are compile time constants, for
initializing protection_map. The cachebits are fixed later. */
#define PAGE_NONE_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
#define PAGE_SHARED_C __pgprot(_PAGE_PRESENT | _PAGE_ACCESSED)
#define PAGE_COPY_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
#define PAGE_READONLY_C __pgprot(_PAGE_PRESENT | _PAGE_RONLY | _PAGE_ACCESSED)
/*
* The m68k can't do page protection for execute, and considers that the same are read.
* Also, write permissions imply read permissions. This is the closest we can get..
*/
#define __P000 PAGE_NONE_C
#define __P001 PAGE_READONLY_C
#define __P010 PAGE_COPY_C
#define __P011 PAGE_COPY_C
#define __P100 PAGE_READONLY_C
#define __P101 PAGE_READONLY_C
#define __P110 PAGE_COPY_C
#define __P111 PAGE_COPY_C
#define __S000 PAGE_NONE_C
#define __S001 PAGE_READONLY_C
#define __S010 PAGE_SHARED_C
#define __S011 PAGE_SHARED_C
#define __S100 PAGE_READONLY_C
#define __S101 PAGE_READONLY_C
#define __S110 PAGE_SHARED_C
#define __S111 PAGE_SHARED_C
/* zero page used for uninitialized stuff */
extern unsigned long empty_zero_page;
/*
* BAD_PAGETABLE is used when we need a bogus page-table, while
* BAD_PAGE is used for a bogus page.
*
* ZERO_PAGE is a global shared page that is always zero: used
* for zero-mapped memory areas etc..
*/
extern pte_t __bad_page(void);
extern pte_t * __bad_pagetable(void);
#define BAD_PAGETABLE __bad_pagetable()
#define BAD_PAGE __bad_page()
#define ZERO_PAGE empty_zero_page
/* number of bits that fit into a memory pointer */
#define BITS_PER_PTR (8*sizeof(unsigned long))
/* to align the pointer to a pointer address */
#define PTR_MASK (~(sizeof(void*)-1))
/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
/* 64-bit machines, beware! SRB. */
#define SIZEOF_PTR_LOG2 2
/* to find an entry in a page-table */
#define PAGE_PTR(address) \
((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
/*
* Conversion functions: convert a page and protection to a page entry,
* and a page entry and page directory to the page they refer to.
*/
#define mk_pte(page, pgprot) \
({ pte_t __pte; pte_val(__pte) = virt_to_phys((void *)page) + pgprot_val(pgprot); __pte; })
#define mk_pte_phys(physpage, pgprot) \
({ pte_t __pte; pte_val(__pte) = (unsigned long)physpage + pgprot_val(pgprot); __pte; })
extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
{
int i;
unsigned long ptbl;
ptbl = virt_to_phys(ptep);
for (i = 0; i < 16; i++, ptbl += sizeof(pte_table)/16)
pmdp->pmd[i] = _PAGE_TABLE | _PAGE_ACCESSED | ptbl;
}
extern inline void pgd_set(pgd_t * pgdp, pmd_t * pmdp)
{ pgd_val(*pgdp) = _PAGE_TABLE | _PAGE_ACCESSED | virt_to_phys(pmdp); }
extern inline unsigned long pte_page(pte_t pte)
{ return (unsigned long)phys_to_virt(pte_val(pte) & PAGE_MASK); }
extern inline unsigned long pmd_page2(pmd_t *pmd)
{ return (unsigned long)phys_to_virt(pmd_val(*pmd) & _TABLE_MASK); }
#define pmd_page(pmd) pmd_page2(&(pmd))
extern inline unsigned long pgd_page(pgd_t pgd)
{ return (unsigned long)phys_to_virt(pgd_val(pgd) & _TABLE_MASK); }
extern inline int pte_none(pte_t pte) { return !pte_val(pte); }
extern inline int pte_present(pte_t pte) { return pte_val(pte) & (_PAGE_PRESENT | _PAGE_FAKE_SUPER); }
extern inline void pte_clear(pte_t *ptep) { pte_val(*ptep) = 0; }
extern inline int pmd_none2(pmd_t *pmd) { return !pmd_val(*pmd); }
#define pmd_none(pmd) pmd_none2(&(pmd))
extern inline int pmd_bad2(pmd_t *pmd) { return (pmd_val(*pmd) & _DESCTYPE_MASK) != _PAGE_TABLE; }
#define pmd_bad(pmd) pmd_bad2(&(pmd))
extern inline int pmd_present2(pmd_t *pmd) { return pmd_val(*pmd) & _PAGE_TABLE; }
#define pmd_present(pmd) pmd_present2(&(pmd))
extern inline void pmd_clear(pmd_t * pmdp)
{
short i;
for (i = 15; i >= 0; i--)
pmdp->pmd[i] = 0;
}
extern inline int pgd_none(pgd_t pgd) { return !pgd_val(pgd); }
extern inline int pgd_bad(pgd_t pgd) { return (pgd_val(pgd) & _DESCTYPE_MASK) != _PAGE_TABLE; }
extern inline int pgd_present(pgd_t pgd) { return pgd_val(pgd) & _PAGE_TABLE; }
extern inline void pgd_clear(pgd_t * pgdp) { pgd_val(*pgdp) = 0; }
/*
* The following only work if pte_present() is true.
* Undefined behaviour if not..
*/
extern inline int pte_read(pte_t pte) { return 1; }
extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_RONLY); }
extern inline int pte_exec(pte_t pte) { return 1; }
extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_RONLY; return pte; }
extern inline pte_t pte_rdprotect(pte_t pte) { return pte; }
extern inline pte_t pte_exprotect(pte_t pte) { return pte; }
extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_RONLY; return pte; }
extern inline pte_t pte_mkread(pte_t pte) { return pte; }
extern inline pte_t pte_mkexec(pte_t pte) { return pte; }
extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; }
extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
extern inline pte_t pte_mknocache(pte_t pte)
{
pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | m68k_pgtable_cachemode;
return pte;
}
extern inline pte_t pte_mkcache(pte_t pte) { pte_val(pte) = (pte_val(pte) & _CACHEMASK040) | m68k_supervisor_cachemode; return pte; }
/* to set the page-dir */
extern inline void SET_PAGE_DIR(struct task_struct * tsk, pgd_t * pgdir)
{
tsk->tss.crp[0] = 0x80000000 | _PAGE_TABLE;
tsk->tss.crp[1] = virt_to_phys(pgdir);
if (tsk == current) {
if (CPU_IS_040_OR_060)
__asm__ __volatile__ (".chip 68040\n\t"
"movec %0,%%urp\n\t"
".chip 68k"
: : "r" (tsk->tss.crp[1]));
else {
unsigned long tmp;
__asm__ __volatile__ ("movec %%cacr,%0\n\t"
"orw #0x0808,%0\n\t"
"movec %0,%%cacr\n\t"
"pmove %1,%%crp\n\t"
: "=d" (tmp)
: "m" (tsk->tss.crp[0]));
}
}
}
#define PAGE_DIR_OFFSET(tsk,address) pgd_offset((tsk),(address))
/* to find an entry in a page-table-directory */
extern inline pgd_t * pgd_offset(struct mm_struct * mm, unsigned long address)
{
return mm->pgd + (address >> PGDIR_SHIFT);
}
#define swapper_pg_dir kernel_pg_dir
extern pgd_t kernel_pg_dir[128];
extern inline pgd_t * pgd_offset_k(unsigned long address)
{
return kernel_pg_dir + (address >> PGDIR_SHIFT);
}
/* Find an entry in the second-level page table.. */
extern inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address)
{
return (pmd_t *) pgd_page(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PMD-1));
}
/* Find an entry in the third-level page table.. */
extern inline pte_t * pte_offset(pmd_t * pmdp, unsigned long address)
{
return (pte_t *) pmd_page(*pmdp) + ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
}
/*
* Allocate and free page tables. The xxx_kernel() versions are
* used to allocate a kernel page table - this turns on ASN bits
* if any.
*/
/* Prior to calling these routines, the page should have been flushed
* from both the cache and ATC, or the CPU might not notice that the
* cache setting for the page has been changed. -jskov
*/
static inline void nocache_page (unsigned long vaddr)
{
if (CPU_IS_040_OR_060) {
pgd_t *dir;
pmd_t *pmdp;
pte_t *ptep;
dir = pgd_offset_k(vaddr);
pmdp = pmd_offset(dir,vaddr);
ptep = pte_offset(pmdp,vaddr);
*ptep = pte_mknocache(*ptep);
}
}
static inline void cache_page (unsigned long vaddr)
{
if (CPU_IS_040_OR_060) {
pgd_t *dir;
pmd_t *pmdp;
pte_t *ptep;
dir = pgd_offset_k(vaddr);
pmdp = pmd_offset(dir,vaddr);
ptep = pte_offset(pmdp,vaddr);
*ptep = pte_mkcache(*ptep);
}
}
extern struct pgtable_cache_struct {
unsigned long *pmd_cache;
unsigned long *pte_cache;
/* This counts in units of pointer tables, of which can be eight per page. */
unsigned long pgtable_cache_sz;
} quicklists;
#define pgd_quicklist ((unsigned long *)0)
#define pmd_quicklist (quicklists.pmd_cache)
#define pte_quicklist (quicklists.pte_cache)
/* This isn't accurate because of fragmentation of allocated pages for
pointer tables, but that should not be a problem. */
#define pgtable_cache_size ((quicklists.pgtable_cache_sz+7)/8)
extern pte_t *get_pte_slow(pmd_t *pmd, unsigned long offset);
extern pmd_t *get_pmd_slow(pgd_t *pgd, unsigned long offset);
extern pmd_t *get_pointer_table(void);
extern int free_pointer_table(pmd_t *);
extern __inline__ pte_t *get_pte_fast(void)
{
unsigned long *ret;
ret = pte_quicklist;
if (ret) {
pte_quicklist = (unsigned long *)*ret;
ret[0] = 0;
quicklists.pgtable_cache_sz -= 8;
}
return (pte_t *)ret;
}
extern __inline__ void free_pte_fast(pte_t *pte)
{
*(unsigned long *)pte = (unsigned long)pte_quicklist;
pte_quicklist = (unsigned long *)pte;
quicklists.pgtable_cache_sz += 8;
}
extern __inline__ void free_pte_slow(pte_t *pte)
{
cache_page((unsigned long)pte);
free_page((unsigned long) pte);
}
extern __inline__ pmd_t *get_pmd_fast(void)
{
unsigned long *ret;
ret = pmd_quicklist;
if (ret) {
pmd_quicklist = (unsigned long *)*ret;
ret[0] = 0;
quicklists.pgtable_cache_sz--;
}
return (pmd_t *)ret;
}
extern __inline__ void free_pmd_fast(pmd_t *pmd)
{
*(unsigned long *)pmd = (unsigned long)pmd_quicklist;
pmd_quicklist = (unsigned long *) pmd;
quicklists.pgtable_cache_sz++;
}
extern __inline__ int free_pmd_slow(pmd_t *pmd)
{
return free_pointer_table(pmd);
}
/* The pgd cache is folded into the pmd cache, so these are dummy routines. */
extern __inline__ pgd_t *get_pgd_fast(void)
{
return (pgd_t *)0;
}
extern __inline__ void free_pgd_fast(pgd_t *pgd)
{
}
extern __inline__ void free_pgd_slow(pgd_t *pgd)
{
}
extern void __bad_pte(pmd_t *pmd);
extern void __bad_pmd(pgd_t *pgd);
extern inline void pte_free(pte_t * pte)
{
free_pte_fast(pte);
}
extern inline pte_t * pte_alloc(pmd_t * pmd, unsigned long address)
{
address = (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
if (pmd_none(*pmd)) {
pte_t * page = get_pte_fast();
if (!page)
return get_pte_slow(pmd, address);
pmd_set(pmd,page);
return page + address;
}
if (pmd_bad(*pmd)) {
__bad_pte(pmd);
return NULL;
}
return (pte_t *) pmd_page(*pmd) + address;
}
extern inline void pmd_free(pmd_t * pmd)
{
free_pmd_fast(pmd);
}
extern inline pmd_t * pmd_alloc(pgd_t * pgd, unsigned long address)
{
address = (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
if (pgd_none(*pgd)) {
pmd_t *page = get_pmd_fast();
if (!page)
return get_pmd_slow(pgd, address);
pgd_set(pgd, page);
return page + address;
}
if (pgd_bad(*pgd)) {
__bad_pmd(pgd);
return NULL;
}
return (pmd_t *) pgd_page(*pgd) + address;
}
extern inline void pte_free_kernel(pte_t * pte)
{
free_pte_fast(pte);
}
extern inline pte_t * pte_alloc_kernel(pmd_t * pmd, unsigned long address)
{
return pte_alloc(pmd, address);
}
extern inline void pmd_free_kernel(pmd_t * pmd)
{
free_pmd_fast(pmd);
}
extern inline pmd_t * pmd_alloc_kernel(pgd_t * pgd, unsigned long address)
{
return pmd_alloc(pgd, address);
}
extern inline void pgd_free(pgd_t * pgd)
{
free_pmd_fast((pmd_t *)pgd);
}
extern inline pgd_t * pgd_alloc(void)
{
pgd_t *pgd = (pgd_t *)get_pmd_fast();
if (!pgd)
pgd = (pgd_t *)get_pointer_table();
return pgd;
}
extern int do_check_pgt_cache(int, int);
extern inline void set_pgdir(unsigned long address, pgd_t entry)
{
}
/*
* Check if the addr/len goes up to the end of a physical
* memory chunk. Used for DMA functions.
*/
#ifdef CONFIG_SINGLE_MEMORY_CHUNK
/*
* It makes no sense to consider whether we cross a memory boundary if
* we support just one physical chunk of memory.
*/
extern inline int mm_end_of_chunk (unsigned long addr, int len)
{
return 0;
}
#else
int mm_end_of_chunk (unsigned long addr, int len);
#endif
extern void kernel_set_cachemode(void *addr, unsigned long size, int cmode);
/*
* The m68k doesn't have any external MMU info: the kernel page
* tables contain all the necessary information.
*/
extern inline void update_mmu_cache(struct vm_area_struct * vma,
unsigned long address, pte_t pte)
{
}
/*
* I don't know what is going on here, but since these were changed,
* swapping hasn't been working on the 68040.
*/
/* With the new handling of PAGE_NONE the old definitions definitely
don't work any more. */
#define SWP_TYPE(entry) (((entry) >> 2) & 0x7f)
#if 0
#define SWP_OFFSET(entry) ((entry) >> 9)
#define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << 9))
#else
#define SWP_OFFSET(entry) ((entry) >> PAGE_SHIFT)
#define SWP_ENTRY(type,offset) (((type) << 2) | ((offset) << PAGE_SHIFT))
#endif
#endif /* __ASSEMBLY__ */
#define module_map vmalloc
#define module_unmap vfree
/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
#define PageSkip(page) (0)
#define kern_addr_valid(addr) (1)
#endif /* _M68K_PGTABLE_H */